视觉探索
这个象限可能最为复杂,因为它包含两类视觉化。上文将探索分为两类,一是假设检验,一是从数据中寻找规律、趋势和异常。前者的目标很明确,后者则相对发散。数据体量越大、复杂度越高、未知因素越多,探索工作的开放性就越高。
视觉探索1:求证。在这类探索活动中,你要回答下面两个问题中的一个:我设想的情况是否属实?如何用不同方式传达这一信息?
在进行求证时,数据范围相对可控,所使用图表类型较为常规;当然,若想以新颖方式呈现信息,也可尝试较少见的图表。求证型图表一般不用于正式场合;你要先自己找到正式展示所需的图表。因此你的时间不应花在设计上,而应快速尝试不同模板,找到最好的数据视觉化方案;电子表格技巧、编程或网站搭建等快速开发原形的知识可能有帮助。
假设一位营销经理认为,在一天中的某些时段,消费者在线购买移动设备多于台式设备,但现有营销策略未能利用这一点。为验证自己的观点,他将一些数据输入到在线软件Datawrapper中(图1)。
他还无法证实或推翻假设,也没有发现其他规律,但他利用工具寻找不同视觉表达。他无需考虑设计问题,速度很快。如图2所示,他将柱状图变为线状图。
现在他发现了一些规律,但使用三个变量还难以把握两类产品销量的关系,于是他将变量减为两个(图3)。每次尝试,他都会评估初始假设的有效性——在一天中的某些时段,消费者购买移动设备多于台式设备。
第四次尝试中,他缩短了时间周期,证实了假设(图4)。
新的软件工具使这类视觉化比以前容易很多,让我们都变成数据分析师。
视觉探索2:开放性探索。更多时候,针对数据的开放性探索是数据科学家和商业智能分析师的领地,不过新出现的工具让一般管理者也可以参与进来。开放性探索很值得尝试,因为它经常带来独一无二的洞见。
由于缺少明确目标,开放探索型图表包含的数据范围较广,个别情况下可能会容纳多组数据,或建立自动更新数据的动态系统,也可用于统计建模。
管理者可通过调整参数、引入新数据源、迭代更新图表,进行交互性探索。复杂数据有时也可用于专业性、不常见的图表,如力导向图(用于表示网络结构)和地形图等。
此处,图表的功能重于形式:数据分析、编程、数据管理和商业智能比图表的观赏性更重要。在这一象限,管理者自然最需要请外部专家搭建数据处理系统,并根据分析目标制作图表。
安默尔·加格(Anmol Garg)是特斯拉的一名数据科学家,他利用视觉探索分析特斯拉电动车的海量传感器数据。他设计了一种交互式图表,用于显示在特定时间内的轮胎压力变化情况。加格和团队严格按照探索形式设计出图表,发现其用处很多:了解车辆出厂时轮胎充气情况、用户充气频率、用户对气压不足警报的反应时间;分析轮胎漏气率;建立模型预测轮胎漏气时点。散点图显示出四个轮胎的压力情况,一般人或许不明所以,专家则一目了然。
在探索数据的过程中,加格发现一些信息只能用图表传达。“我们时刻都在和海量数据打交道,”他说,“对照电子表格搜索数据库肯定一无所获,必须使用图表。”向管理层演示时,加格将探索型图表转化为较简单的图表(下文将介绍)。“他们最喜欢看图。”他说。
已有0人发表了评论
哈佛网友评论